ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hideyuki Saitoh, Hirofumi Homma, Youichi Noya, Toshiyuki Ohnishi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 536-541
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22647
Articles are hosted by Taylor and Francis Online.
Tritium radioluminography was applied to pure vanadium and V-5 mol%Fe alloy to observe the tritium distribution and to evaluate the local tritium concentration in them. It was demonstrated that the tritium distribution at a microscopic area in the specimens was quantitatively and graphically displayed. In the pure vanadium specimen, the local tritium concentration was about three times different depending on the crystal orientation of the grains. The tritium radioactivity of the grains with (001) and (111) orientation are 1 Bq/mm2 and 0.4 Bq/mm2, respectively. These values correspond to the tritium concentration of 15 mol ppb and 6 mol ppb. The difference of the local tritium concentration was attributed to the variety of the morphology of precipitated hydride depending on the crystal orientation of the grains. For the radioactivity recorded in the imaging plate, the component of the X-rays generated from tritium in the specimen was only 2%, i.e., most of the intensity was attributed to the β-rays. In the V-Fe alloy specimen, it was shown that the tritium distribution correlates with iron segregation formed during solidification after the arc melting. The cross sectional observation showed that the local tritium concentration in equilibrium distribution depends on the local iron concentration in the specimen. The local tritium concentration gradually decreases from 115 mol ppb to 70 mol ppb as the iron concentration at the iron segregated region increases from 3 mol% to 4.5 mol%.