ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hideyuki Saitoh, Hirofumi Homma, Youichi Noya, Toshiyuki Ohnishi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 536-541
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22647
Articles are hosted by Taylor and Francis Online.
Tritium radioluminography was applied to pure vanadium and V-5 mol%Fe alloy to observe the tritium distribution and to evaluate the local tritium concentration in them. It was demonstrated that the tritium distribution at a microscopic area in the specimens was quantitatively and graphically displayed. In the pure vanadium specimen, the local tritium concentration was about three times different depending on the crystal orientation of the grains. The tritium radioactivity of the grains with (001) and (111) orientation are 1 Bq/mm2 and 0.4 Bq/mm2, respectively. These values correspond to the tritium concentration of 15 mol ppb and 6 mol ppb. The difference of the local tritium concentration was attributed to the variety of the morphology of precipitated hydride depending on the crystal orientation of the grains. For the radioactivity recorded in the imaging plate, the component of the X-rays generated from tritium in the specimen was only 2%, i.e., most of the intensity was attributed to the β-rays. In the V-Fe alloy specimen, it was shown that the tritium distribution correlates with iron segregation formed during solidification after the arc melting. The cross sectional observation showed that the local tritium concentration in equilibrium distribution depends on the local iron concentration in the specimen. The local tritium concentration gradually decreases from 115 mol ppb to 70 mol ppb as the iron concentration at the iron segregated region increases from 3 mol% to 4.5 mol%.