ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
L. Palcsu, M. Molnár, Zs. Szántó, É. Svingor, I. Futó
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 532-535
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22646
Articles are hosted by Taylor and Francis Online.
The performance of a mass spectrometric system for measurement of tritium by 3He ingrowth method is described. Preparation and measurement includes three steps. The first step is to pump the dissolved gas from the environmental water samples stored in special glass bulb. The second step is the storage of the degassed water for a few months. In the final step the helium-3 formed from tritium is measured by mass spectrometer. In the course of tritium measurement there were some difficulties with the glass bulbs, such as pre-treatment of the glass, storage of the samples in deep freezer, long storage time, O-ring sealing. To solve these problems metal bulbs were built and applied with volume of six litres. The metal bulb was equipped with a metal valve. Three litres of water can be filled into the metal bulb. The large volume of the bulb causes an increase of degassing time, and a decrease of the storage time. The degassing of three litres of water needs twice one and a half hours in two days. The storage time is only two months in contrast to the half-year storage time of glass bulb. The background, the helium penetration from the air is less than using glass bulbs, because the metal bulb can be fitted to the inlet system via copper gasket instead of elastic O-ring.