ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. Palcsu, M. Molnár, Zs. Szántó, É. Svingor, I. Futó
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 532-535
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22646
Articles are hosted by Taylor and Francis Online.
The performance of a mass spectrometric system for measurement of tritium by 3He ingrowth method is described. Preparation and measurement includes three steps. The first step is to pump the dissolved gas from the environmental water samples stored in special glass bulb. The second step is the storage of the degassed water for a few months. In the final step the helium-3 formed from tritium is measured by mass spectrometer. In the course of tritium measurement there were some difficulties with the glass bulbs, such as pre-treatment of the glass, storage of the samples in deep freezer, long storage time, O-ring sealing. To solve these problems metal bulbs were built and applied with volume of six litres. The metal bulb was equipped with a metal valve. Three litres of water can be filled into the metal bulb. The large volume of the bulb causes an increase of degassing time, and a decrease of the storage time. The degassing of three litres of water needs twice one and a half hours in two days. The storage time is only two months in contrast to the half-year storage time of glass bulb. The background, the helium penetration from the air is less than using glass bulbs, because the metal bulb can be fitted to the inlet system via copper gasket instead of elastic O-ring.