ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Masao Matsuyama, Tadayuki Murai, Kuniaki Watanabe
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 505-509
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22640
Articles are hosted by Taylor and Francis Online.
To make a nondestructive measurement of tritium retained on/in materials surfaces, conversion efficiency of β-rays to characteristic X-rays in an argon atmosphere has been examined. For this purpose, various tritium-containing graphite plates were prepared at first by ion implantation. After the tritium implantation, measurements of an X-ray spectrum from the graphite plates were carried out in the argon atmosphere. A good linear relation was observed between the intensity of Ar(Kα) characteristic X-rays and the total amount of tritium deter-mined by full-combustion. The apparent conversion efficiency was determined as 4.15x10−6 counts/s/Bq. To determine the intrinsic conversion efficiency for argon atoms, relevant correction factors such as geometrical efficiency, absorption of X-rays, effects of a tritium depth profile and a photoelectric effect were experimentally evaluated through numerical calculations. Taking into account these correction factors, the intrinsic conversion efficiency was determined to be 3.1x10−4 photons/β-particle.