ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Atarashi-Andoh, H. Amano, T. Takahashi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 470-473
Environment | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22633
Articles are hosted by Taylor and Francis Online.
ETDOSE is a simple computer code for calculating distribution patterns of tritium in the environment for acute and chronic releases of HT and HTO. It calculates tritium concentrations in air, soil, plant free water and plant organic material, and estimates dose impacts from inhalation of air and ingestion of food. ETDOSE includes two different models for calculating HTO re-emission from the soil surface for a chronic tritium release. These two models were tested in the IAEA's model validation program BIOMASS (BIOsphere Modeling and ASSessment methods)1.