ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Hiroshi Takeda, Shoichi Fuma, Kiriko Miyamoto, Kei Yanagisawa, Nobuyoshi Ishii, Noriko Kuroda
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 445-449
Biology | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22629
Articles are hosted by Taylor and Francis Online.
The purpose of the present study is to develop an accurate and practicable method to estimate an internal dose after exposure to tritium in various chemical forms. In rats exposed to tritiated water (HTO) or some tritiated organic compounds by single ingestion, the concentrations of total tritium and organically bound tritium (OBT) in blood and various organs were determined at various time intervals after ingestion. The concentrations of total tritium in blood showed a tendency to be higher than those in the majority of organs. When the cumulative doses to blood and organs for 100 days after ingestion of various tritiated compounds were compared, the doses to blood were almost the same or higher as compared with the maximum doses to organs. These results indicated that blood analyses would be useful to estimate a maximum of internal doses for exposure to tritium in various chemical forms. It was also suggested that the concentration ratio of OBT to total tritium in blood could be used to deduce the chemical form of tritium at exposure and the elapsed time after exposure.