ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Hiroshi Tauchia, Michiko Ichimasa, Yusuke Ichimasa, Takahiro Shiraishi, Kenichi Morishima, Shinya Matsuura, Kenshi Komatsu
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 413-416
Biology | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22622
Articles are hosted by Taylor and Francis Online.
A novel hyper-sensitive detection system was developed to detect Hprt-deficient mutations using Hprt deficient hamster fibroblast cells which carry a normal human X-chromosome. The system has been found to be 100-fold more sensitive for detecting mutations than the conventional system which uses an internal Hprt gene. The mutation frequency induced by 1 Gy of tritium radiation at different dose rates (0.9, 0.4, 0.04, and 0.018 Gy/h) was measured. No significant differences in mutation frequencies were observed within the range of dose rates used, suggesting that if a reverse dose-rate effect exists, it may not be observable with tritium radiation at dose rates over 0.018 Gy/h. Interestingly, molecular analysis of the Hprt locus in Hprt-deficient mutants induced by tritium showed that deletion sizes observed in the hamster cell's human X-chromosome under these conditions are much smaller in cells exposed at 0.04 (and 0.018 Gy/h) than in cells exposed at 0.9 Gy/h. This phenomenon seems to be specific for tritium radiation because it was not apparent after exposure to γ-rays. The novel hyper-sensitive detection system used here is useful for analysis of the mutagenic effects of low doses of tritium radiation delivered at low dose rates.