ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hongyu Bai, Yanfang Bi, Jingrong Wang, Ming Zhuang, Ping Zhu, Linhai Sheng, Qiyong Zhang
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 162-166
Technical Paper | doi.org/10.13182/FST02-A224
Articles are hosted by Taylor and Francis Online.
HT-7U is a fully superconducting tokamak. All of the toroidal field and poloidal field superconducting magnets are made of NbTi superconductor and are designed to operate at 3.8 K in the steady-state operation mode. The magnet system will be cooled with forced-flow supercritical helium to this temperature level with an equivalent refrigeration capacity of ~2 kW/4.4 K. To satisfy this requirement, a helium refrigerator is designed to be able to provide the cooling power at 3.5, 4.5, and 80 K for the coils, supports, and thermal shields. The refrigerator can also produce liquid helium for the cooling of the current leads. This paper describes the cryogenic system of HT-7U, the refrigeration process and helium plant, and the forced-flow cooling requirement of the superconducting magnets.