ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hongyu Bai, Yanfang Bi, Jingrong Wang, Ming Zhuang, Ping Zhu, Linhai Sheng, Qiyong Zhang
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 162-166
Technical Paper | doi.org/10.13182/FST02-A224
Articles are hosted by Taylor and Francis Online.
HT-7U is a fully superconducting tokamak. All of the toroidal field and poloidal field superconducting magnets are made of NbTi superconductor and are designed to operate at 3.8 K in the steady-state operation mode. The magnet system will be cooled with forced-flow supercritical helium to this temperature level with an equivalent refrigeration capacity of ~2 kW/4.4 K. To satisfy this requirement, a helium refrigerator is designed to be able to provide the cooling power at 3.5, 4.5, and 80 K for the coils, supports, and thermal shields. The refrigerator can also produce liquid helium for the cooling of the current leads. This paper describes the cryogenic system of HT-7U, the refrigeration process and helium plant, and the forced-flow cooling requirement of the superconducting magnets.