ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Eric Tucker, J. Gilligan
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 118-129
Technical Paper | doi.org/10.13182/FST98-A22
Articles are hosted by Taylor and Francis Online.
The vapor shield outward expansion rate can be shown to affect energy transport through the vapor shield, thereby influencing the vapor shield effectiveness. To more accurately determine the divertor plate erosion depth from a tokamak fusion reactor disruption or plasma gun sources, it is then necessary to include source plasma (beam) momentum transfer and beam mass deposition to the expanding vapor shield. Other factors such as incident heat flux and target Z value are shown to influence the vapor shield expansion rate as well. Code calculations show that increasing heat fluxes can increase the fraction of vapor shield kinetic energy and lower the fraction f of incident energy transported to the solid. Low-Z materials give higher kinetic energies as well but result in a higher f due to a lower specific heat. These results can also be applied to plasma gun technology to help increase its efficiency. In an electrothermal gun, the plasma expansion rate (rate at which vaporized material travels out of the gun) can cause differing plasma residence times and differing plasma temperatures as well. Determining the mechanisms that influence the vapor shield expansion rate and showing its sensitivity on f can give us a qualitative way of determining how changing parameters can influence plasma gun efficiency. Low-energy (<200 eV) disruption plasmas add much mass as well as momentum to a vapor shield. Mass addition can cause the vapor shield temperature and f to differ for a given incident heat flux and change the vapor shield expansion rate as well. Also, we find that deuterium's shielding effectiveness differs from carbon.