ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
HT-7 Team, Baonian Wan
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 116-123
Technical Paper | doi.org/10.13182/FST02-A218
Articles are hosted by Taylor and Francis Online.
The HT-7 tokamak experiment research has made important progress. The main efforts have dealt with quasi-steady-state operation, lower-hybrid (LH) current drive (LHCD), plasma heating with ion cyclotron range of frequencies (ICRF), ion Bernstein waves (IBWs), fueling with pellets and supersonic molecular beams, first-wall conditioning techniques, and plasma and wall interaction. Plasma parameters in the experiments were much improved; for example, ne = 6.5 × 1019 m-3, and a plasma pulse length of >10 s was achieved. ICRF boronization and conditioning resulted in Zeff close to unity. Steady-state full LH wave current drive has been achieved for >3 s. LHCD rampup and recharge have also been demonstrated. The best [eta]CDexp of 1019 m-2 A/W is achieved. Quasi-steady-state H-mode-like plasmas with a density close to the Greenwald limit were obtained by LHCD, where energy confinement time was nearly five times longer than in the ohmic case. The synergy between the IBW, pellet, and LHCD was investigated. New doped graphite as limiter material and ferritic steel used to reduce the ripples have been developed. Research on the mechanism of microturbulence has been extensively carried out experimentally.