ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Lianghua Yao, Beibin Feng, Jaifu Dong, Yan Zhou, Zhengying Cui, Jianyong Cao, Nianyi Tang, Zhen Feng, Zhenggui Xiao, Xianming Song, Wenyu Hong, Enyao Wang, Yong Liu
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 107-115
Technical Paper | doi.org/10.13182/FST02-A217
Articles are hosted by Taylor and Francis Online.
As a new fueling method, supersonic molecular beam injection (SMBI) has been successfully developed and used in the HL-1M tokamak and HT-7 superconducting tokamak. SMBI can enhance penetration depth and fueling efficiency. It can be considered a significant improvement over conventional gas puffing. In recent experiments, hydrogen clusters have been found in the beam produced by high working gas pressure. The hydrogen particles of the beam have penetrated into the plasma center region, in which the average velocity of the injected beam is >1200 m/s. The rate of increase of electron density for SMBI, d[bar]ne/dt, approaches that of small ice pellet injection (PI). The plasma density increases step by step after multipulse SMBI, just as with the effects of multipellet fueling. Comparison of fueling effects was made between SMBI and small ice PI in the same shot of ohmic discharge in HL-1M.