ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Masami Fujiwara, Nobuyoshi Ohyabu, Keisuke Matsuoka, Shoichi Okamura, Osamu Motojima, Tokuhiro Obiki, Fumimichi Sano, Katsumi Kondo, Masahiro Wakatani, Tohru Mizuuchi, Kiyoshi Hanatani, Yuji Nakamura, Kazunobu Nagasaki, Hiroyuki Okada, Sakae Besshou, Masahiko Nakasuga
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 32-49
Technical Paper | doi.org/10.13182/FST02-A211
Articles are hosted by Taylor and Francis Online.
Experimental results are summarized for major helical devices in Japan: Large Helical Device (LHD), Compact Helical System (CHS), and Heliotron J. The LHD and CHS have planar magnetic axes, while Heliotron J has a nonplanar magnetic axis.The LHD, the largest superconducting device in the world, has the following machine parameters: major radius R of 3.9 m, average minor radius a of 0.6 m, magnetic field on axis B of 3 T, multipolarity l of 2, toroidal period number m of 10, and auxiliary heating power P of ~14 MW. The LHD achieved the maximum stored energy Wp dia of > 1 MJ, the maximum value of the volume averaged beta <dia*gt; of >3.0% at B of 0.5 T, high confinement time E of 0.3 s at Te(0) of 1.1 keV and <ne> of 6.5 × 1019 m-3, and long pulse operations up to 120 s at high temperature.The CHS has the following machine parameters: R = 1 m, a = 0.2 m, l = 2, and m = 8. The parameters of neutral beam heated plasmas are in the range with <ne> of ~4 to 5 × 1019 m-3, Te(0) of 500 to 700 eV, and energy confinement time of several milliseconds. Progress has been made in studies of bifurcation phenomena of electric potential, neoclassical internal transport barriers, and plasma flows in the toroidal and poloidal directions.The most important achievement from recent CHS and LHD experiments is to realize the internal transport barriers on the basis of potential bifurcation.Heliotron J, which was converted from the Heliotron E (H-E) device, employs a helical magnetic axis by the use of l = 1 continuous helical coil and auxiliary coils such as poloidal and toroidal coils. The machine parameters are as follows: R = 1.2 m, a = 0.1 to 0.2 m, and B = 1 to 1.5 T. Initial results show the maximum stored energy Wp ~ 0.7 kJ and <> ~ 0.2%.The range of plasma parameters has been greatly expanded by the LHD, CHS, H-E, and Heliotron J experiments. The confinement data in helical devices are scaled empirically as ISS-95 (International Stellarator Scaling), and plasma performance is comparable with that in tokamaks.