ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hiromasa Ninomiya, Akio Kitsunezaki, Masatsugu Shimizu, Masaaki Kuriyama, JT-60 Team, Haruyuki Kimura, Hisato Kawashima, Kazuhiro Tsuzuki, Masayasu Sato, Nobuaki Isei, Yukitoshi Miura, Katsumichi Hoshino, Kensaku Kamiya, Toshihide Ogawa, Hiroaki Ogawa, Kengo Miyachi, JFT-2M Group, Satoshi Itoh, Naoaki Yoshida, Kazuaki Hanada, Kazuo Nakamura, Hideki Zushi, Mizuki Sakamoto, Eriko Jotaki, Makoto Hasegawa, TRIAM Group
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 7-31
Technical Paper | doi.org/10.13182/FST02-A210
Articles are hosted by Taylor and Francis Online.
Research activities of the Japanese tokamaks JT-60U, JFT-2M, and TRIAM-1M are described. The recent JT-60 program is focused on the establishment of a scientific basis of advanced steady-state operation. Plasma performance in transient and quasi steady states has been significantly improved, utilizing reversed shear and weak shear (high-p) ELMy H-modes characterized by both internal and edge transport barriers and high bootstrap current fractions. Development of each key issue for advanced steady-state operation has also been advanced. Advanced and basic research of JFT-2M has been performed to develop high-performance tokamak plasma as well as the structural material for a fusion reactor. Toroidal field ripple reduction with ferritic steel plates outside the vacuum vessel is successfully demonstrated. No adverse effects to the plasma were observed with poloidal fields inside the vacuum vessel (partial covering). Preparation is in progress for full-scale testing of the compatibility of the ferritic steel wall (full covering) with plasma. A heavy ion beam probe has been installed to study H-mode plasmas. Compact toroid (CT) injection experiments are performed, showing deep CT penetration into the core region of the H-mode. The TRIAM project has investigated steady-state operation and high-performance plasma of a tokamak with the high toroidal magnetic field superconducting tokamak. Four important contributions in the fields of fusion technology of superconducting tokamaks, steady-state operation, high-performance plasma, and startup of plasma current without the assistance of center solenoid coils have been achieved on TRIAM-1M, especially regarding steady-state operation by realization of a discharge for >3 h.