ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. Paul Drake
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 405-415
Technical Paper | First-wall Technology | doi.org/10.13182/FST83-A20864
Articles are hosted by Taylor and Francis Online.
Data from the Tandem Mirror Experiment (TMX) and other recent research show how to control plasma/wall interactions in tandem mirrors (TMs). Based on current knowledge, plasma/wall interactions will not limit the performance of TM reactors—either at the end walls or the radial walls. Magnetic field expansion and gas pumping can be used to regulate the plasma conditions at the end wall. Specifically, in TMX the plasma density at the end wall was found to be ≈2 × 109 em −3, whereas the end-plug density was ≈2 × 1013 cm−3; also, the sheath potential at the wall (8 V) was <10% of the end-plug electron temperature. The "natural divertor" effect-by which positively charged plasmas in magnetic mirror machines exhaust particles and energy to the end wall—can be used to both control the plasma conditions at the radial walls and divert impurities to the end wall. These techniques, the data that support them, and needed areas of further research are discussed.