ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Wayne R. Meier
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 385-391
Technical Paper | Blanket Engineering | doi.org/10.13182/FST83-A20862
Articles are hosted by Taylor and Francis Online.
Monte Carlo neutronics calculations have been carried out to compare the effects of chamber ports on the neutron leakage and blanket performance for lithium and lead-lithium blankets. A spherical chamber with diametrically opposed, conical penetrations through the blanket and a 14.1-MeV point source at its center is the basis for the comparison. The total neutron leakage through ports in a lithium blanket is about two times greater than one would estimate based on the solid angle fraction subtended by the holes. For a blanket comprised primarily of the lead-lithium eutectic, Pb83Li17, the leakage per deuterium-tritium neutron is about six times the subtended solid angle fraction. As a result of the enhanced neutron leakage, the tritium-breeding ratio and neutron energy deposited in the blanket decrease more rapidly than the loss of blanket coverage. For example, for a chamber in which the ports subtend 5% of the total solid angle, the tritium-breeding ratios are ∼s and ∼20% less than the results without ports for the lithium and Pb83Li17 blankets, respectively. The neutron energy deposited in the blanket decreases ∼7% for lithium and ∼14% for Pb83Li17 for the same 5% loss in blanket coverage.