ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Z. Youssef, R. W. Conn
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 361-384
Technical Paper | Blanket Engineering | doi.org/10.13182/FST83-A20861
Articles are hosted by Taylor and Francis Online.
The radioactivity, biological hazard potential, and afterheat levels in the deuterium-deuterium (D-D) fuel cycle fusion reactor, SATYR, have been evaluated for two types of structural materials: ferritic steel (HT-9) and sintered aluminum product. Results are compared to the corresponding levels in the deuterium-tritium (D-T) fuel cycle systems, STAR-FIRE and WITAMIR-I, both during operation and after plant decomissioning. The influence of blanket replacements on the radioactivity levels has been considered in the comparative analysis. It has been found that the long-term radioactivity level (100 to 1000 yr after plant shutdown) in the ferritic steel blanket of the SATYR design is somewhat higher, by a factor of 2 to 6, than that found for a D-T reactor system employing the same structural alloy. The high levels are attributed to the softer spectrum and the larger structure volume fraction encountered in the D-D machines. However, the levels during plant operation (∼30 yr) are comparable. Isotopic tailoring and elemental substitution in alloys to reduce the long-term radioactivity levels in the SATYR design are discussed. It is found that three orders of magnitude reduction in radioactivity levels can be achieved by isotopically tailoring the molybdenum in the ferritic steel to 100% 97Mo. The elemental substitution of vanadium for nickel and molybdenum in ferritic steels is shown to reduce long-term radioactivity levels by four orders of magnitude. These low levels at long times after shutdown are below those found for blankets using aluminum alloy structure. The results make clear that elemental composition should be a primary consideration in alloy formulation if the goal of a low radioactivity level in fusion reactor radwaste is to be achieved.