ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Michael R. Gordinier
Fusion Science and Technology | Volume 3 | Number 2 | March 1983 | Pages 318-328
Technical Paper | Special Section Content | doi.org/10.13182/FST83-A20855
Articles are hosted by Taylor and Francis Online.
The extrapolation of the ELMO Bumpy Torus (EBT) confinement concept to the reactor regime involves many uncertainties, two of the most critical unknowns being: (a) the power required to sustain the steady-state high-beta annuli necessary for core plasma stabilization and (b) the propagation of ion cyclotron resonance heating (ICRH) waves in an irregularly EBT-shaped vacuum vessel. Consequently, strong emphasis has been placed on plasma modeling in order to interpret and extrapolate present data. Some of the modeling work done to date on the conjecture of replacing electron rings with ion rings is highlighted. A method that evaluates the density eigenvalues of the plasma for which ICRH wave propagation can exist is also described.