ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Michael R. Gordinier
Fusion Science and Technology | Volume 3 | Number 2 | March 1983 | Pages 318-328
Technical Paper | Special Section Content | doi.org/10.13182/FST83-A20855
Articles are hosted by Taylor and Francis Online.
The extrapolation of the ELMO Bumpy Torus (EBT) confinement concept to the reactor regime involves many uncertainties, two of the most critical unknowns being: (a) the power required to sustain the steady-state high-beta annuli necessary for core plasma stabilization and (b) the propagation of ion cyclotron resonance heating (ICRH) waves in an irregularly EBT-shaped vacuum vessel. Consequently, strong emphasis has been placed on plasma modeling in order to interpret and extrapolate present data. Some of the modeling work done to date on the conjecture of replacing electron rings with ion rings is highlighted. A method that evaluates the density eigenvalues of the plasma for which ICRH wave propagation can exist is also described.