ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masahiro Kinoshita, Yuji Naruse
Fusion Science and Technology | Volume 3 | Number 1 | January 1983 | Pages 112-120
Technical Paper | Tritum System | doi.org/10.13182/FST83-A20821
Articles are hosted by Taylor and Francis Online.
The new multistage-type H2/H2O exchange column using hydrophobic catalysts without the superheating section, which separates the water/vapor scrubbing step and the vapor/hydrogen exchange step, is one of the most attractive processes for hydrogen isotope separation. The present study deals with two exchange columns of this type that seem to be feasible. One is a column processing D2, D2O, HD, HDO, DT, and DTO, which is a unit process for recovery of tritium and removal of protium from the heavy water used as the moderator for nuclear fission reactors. The other is a column processing H2, H2O, HD, HDO, HT, and HTO for a decrease in volume of the tritiated water produced by the operation of tritium facilities. A mathematical simulation procedure is developed for these columns. The rigorous solutions of all the basic equations derived from requirements for conservation of material and phase equilibrium on any stage are effectively found out by means of a successive iteration method. This method uses the tridiagonal matrix algorithm, which is often used in distillation calculations, modifying it to make it applicable to the cases where three phases (liquid water/water vapor/hydrogen gas) must be considered. It is also shown that a specific convergence technique is needed to accelerate the progress of the iterative calculation or to ensure achievement of convergence. Several numerical experiments indicate that this simulation procedure is applicable in a fairly wide range of calculational conditions.