ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
William L. Barr, Ralph W. Moir
Fusion Science and Technology | Volume 3 | Number 1 | January 1983 | Pages 98-111
Technical Paper | Energy Storage, Switching, and Conversion | doi.org/10.13182/FST83-A20820
Articles are hosted by Taylor and Francis Online.
The power carried out through the ends of a mirror fusion reactor by escaping plasma can be converted directly into electricity by a plasma direct converter. Test results from three plasma direct converters are described. The first two tests were performed with a steady-state power density up to 70 W/cm2 to simulate the predicted conditions on a reactor (∼100 W/cm2). A single-stage unit and a two-stage unit of the venetian-blind type were tested up to 100 kV and 6 kW for a total time of ∼80 h. In scaling up in energy from previous experiments, the new effects that became important were the ionization of background gas and the release of secondary electrons at surfaces. In the third test, a single-stage unit was mounted on the end wall of the Tandem Mirror Experiment (TMX) device where it intercepted some of the end-loss plasma. Of the 138 W incident on the direct converter, 79 W were recovered and 12 W were used to power the suppressor grid. The net efficiency was therefore 48%; this was in good agreement with predictions for a single-stage unit and the TMX plasma parameters. These test results lend confidence to our direct-converter designs for fusion reactors. The remaining area of concern includes the general problem imposed by high-voltage breakdown in a large direct converter with many joules of stored energy.