ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Don Steiner, Charles A. Flanagan
Fusion Science and Technology | Volume 3 | Number 1 | January 1983 | Pages 6-52
Overview | Fusion Reactor | doi.org/10.13182/FST83-A20816
Articles are hosted by Taylor and Francis Online.
During 1981, the Fusion Engineering Design Center developed a baseline design for the Fusion Engineering Device (FED) called for in the U.S. Magnetic Fusion Energy Engineering Act of 1980. The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field (TF) coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions, the fusion power is ∼180 MW (neutron wall loading ∼0.4 MW/m2) and a plasma Q of ∼5 is expected. At 10-T conditions, which are expected to be limited to ∼10% of the total operations, the fusion power is ∼450 MW (∼1.0 MW/m2) and ignition is expected. Maintenance and cost were the key considerations in developing the design. The plasma chamber is assembled by inserting ten shield sectors into a spool support structure. Ten TF coils (7.4- × 10.9-m bore) are employed and produce a 3.6-T field (8 T) or 4.6-T field (10 T) on axis. Options for the TF coils include superfluid-cooled NbTi, subcooled NbTi, and a hybrid coil consisting of both NbTi and Nb3Sn. The poloidal coil system incorporates both normal copper coils (inside the TF coils) and superconducting NbTi coils (outside the TF coils). Plasma bulk heating is accomplished using 50 MW of ion cyclotron resonance heating. Electron cyclotron resonance heating is used for startup assist. A mechanical pumped limiter, located at the bottom of the plasma chamber, establishes the plasma edge and is used to pump hydrogen and helium particles. The first wall consists of water-cooled stainless steel panels complemented with passively cooled graphite armor on the top and inboard walls and on each side of the limiter. The inboard shield is 60 cm thick and the outboard shield is 120 cm thick. Feasible solutions were developed for each of the major systems and subsystems of this FED design. However, key design issues remain, and if resolved could improve the overall design. This design and the supporting basis constitute a departure point for the initiation of a full conceptual design effort.