ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Don Steiner, Charles A. Flanagan
Fusion Science and Technology | Volume 3 | Number 1 | January 1983 | Pages 6-52
Overview | Fusion Reactor | doi.org/10.13182/FST83-A20816
Articles are hosted by Taylor and Francis Online.
During 1981, the Fusion Engineering Design Center developed a baseline design for the Fusion Engineering Device (FED) called for in the U.S. Magnetic Fusion Energy Engineering Act of 1980. The device has a major radius of 5.0 m with a plasma minor radius of 1.3 m elongated by 1.6. Capability is provided for operating the toroidal field (TF) coils up to 10 T, but the bulk of the operations are designed for 8 T. At 8-T conditions, the fusion power is ∼180 MW (neutron wall loading ∼0.4 MW/m2) and a plasma Q of ∼5 is expected. At 10-T conditions, which are expected to be limited to ∼10% of the total operations, the fusion power is ∼450 MW (∼1.0 MW/m2) and ignition is expected. Maintenance and cost were the key considerations in developing the design. The plasma chamber is assembled by inserting ten shield sectors into a spool support structure. Ten TF coils (7.4- × 10.9-m bore) are employed and produce a 3.6-T field (8 T) or 4.6-T field (10 T) on axis. Options for the TF coils include superfluid-cooled NbTi, subcooled NbTi, and a hybrid coil consisting of both NbTi and Nb3Sn. The poloidal coil system incorporates both normal copper coils (inside the TF coils) and superconducting NbTi coils (outside the TF coils). Plasma bulk heating is accomplished using 50 MW of ion cyclotron resonance heating. Electron cyclotron resonance heating is used for startup assist. A mechanical pumped limiter, located at the bottom of the plasma chamber, establishes the plasma edge and is used to pump hydrogen and helium particles. The first wall consists of water-cooled stainless steel panels complemented with passively cooled graphite armor on the top and inboard walls and on each side of the limiter. The inboard shield is 60 cm thick and the outboard shield is 120 cm thick. Feasible solutions were developed for each of the major systems and subsystems of this FED design. However, key design issues remain, and if resolved could improve the overall design. This design and the supporting basis constitute a departure point for the initiation of a full conceptual design effort.