Fusion power stations utilizing the deuterium-tritium reaction may not result in significantly different occupational radiation exposures than are obtained currently at light water reactor (LWR) stations, even with modest advances in remote control technology. The primary reasons for this observation follow. 1. Mobile activation products will be generated at about twice the rate of LWRs. 2. A significantly greater amount of work in elevated radiation zones is associated with repair and maintenance of not only the blanket and first wall, but also the large number of diagnostic and auxiliary systems required for fusion that are not required for fission. 3. The prevalence of tritium throughout most of the reactor complex and the fuels and materials cycle. Very few specific numbers can be estimated with reasonable certainty at present; however, the general picture of occupational hazards at fusion reactors is slowly taking a rough form.