ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ronald C. Kirkpatrick
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 707-711
Technical Paper | ICF Target | doi.org/10.13182/FST82-A20809
Articles are hosted by Taylor and Francis Online.
Only rudimentary progress has been made toward a practical theory of instabilities and their effects in small fusion targets. This is partly because a practical theory must combine several complicated physical phenomena. Most analytic studies of small amplitude Rayleigh- Taylor instabilities have neglected rotational flow, and the transition to large amplitude (nonlinear) behavior is probably dependent on poorly known fluid properties. Also, heat transfer and conduction may provide stabilization under some circumstances, while shear flow leads to Helmholtz instability, and ultimately some degree of pusher fragmentation must occur. Several mechanisms may couple the instabilities to the deuterium-tritium (D-T). The chief concern is added energy loss from the D-T volume and may result from increased area of a distorted interface, the enhanced emission from the D-T due to impurities introduced by the instabilities, and energy deposition by the D-T alphas in the pusher material rather than in the D-T.