ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ihor O. Bohachevsky, Ronald N. Kostoff
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 687-699
Technical Paper | Blanket Engineering | doi.org/10.13182/FST82-A20807
Articles are hosted by Taylor and Francis Online.
Cyclic thermal loads and stresses in two critical components of fusion reactors, including fusion-fission hybrids, are modeled and calculated. The two critical components are the solid wall adjacent to the fusion plasma (“first wall”) and the fissile fuel elements in the high-power density region of the blanket. These two components exemplify two limiting cases of thermal loading: The first-wall loads are generated by predominantly shallow energy deposition that may be approximated with a flux across the surface and the fuel elements loads are generated by volumetric heating. Two approaches are used to solve the heat conduction equation and to calculate the resulting stresses in terms of system parameters. The first is expansion into Fourier series and determination of periodic solutions; the second is analysis and superposition of single-pulse responses weighted with appropriate time delay and decay factors. Approximate closed-form expression for temperature excursions and thermal stresses are derived; these expressions may be evaluated conveniently and rapidly for comparison of different systems. The results provide a quantitative basis for trade-off studies and comparative assessments of different fusion reactor systems.