ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ronald J. Onega, Bill M. Su
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 667-686
Technical Paper | Blanket Engineering | doi.org/10.13182/FST82-A20806
Articles are hosted by Taylor and Francis Online.
Calculations of the steady-state neutron, photon, and temperature distributions as well as the transient thermal distribution following a major plasma disruption (MPD) in the first wall and blanket region of an engineering type of controlled thermonuclear reactor was made. A canister blanket design was considered and both the incident neutron and secondary gamma-ray heating were used in calculating the volumetric heat source rate. An average value of the volumetric heat source rate was calculated to be ∼0.5 MW/m3 and the neutron wall loading was 2. 38 MW/m2. After steady-state conditions were obtained, major plasma disruption times of 10 and 24 ms were assumed for the transient calculations. For each case, a constant velocity model was assumed for the surface heat flux impinging on the first wall during an MPD. Neutronic studies using the ANISN code provided volumetric heat source rates that were used to do the thermal analysis. With these volumetric heat source rates obtained, a heat conduction code, HEATING5, was run for the steady-state temperature distribution. Using the steady-state temperature distribution as an initial condition, HEATING5 was run again for the transient thermal study, which included the surface heat flux due to the disruption, together with a volumetric heat source rate resulting from the eddy currents induced in the wall following an MPD. Results show that there is a possibility of melting portions of the first wall if the disruption time of 10 ms is used, while no melting is possible for the 24-ms case; however, a maximum transient temperature of ∼1000°C on the first wall does occur. The temperature in the blanket region remained the same as before the MPD since the transient takes place so rapidly that the effects were felt most by the first wall. The average number of abortions allowed before failure of the first wall was 200 thermal cycles for the 24-ms case.