ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Nuclear News announces the 40 Under 40
As the American Nuclear Society’s 2024 Winter Meeting and Expo kicks off in Orlando, Fla., the nuclear industry’s eyes are turned toward the future—advanced technologies, updated regulations, a new administration, and importantly, the future of the workforce.
Mahmoud Z. Youssef, Robert W. Conn, Charles W. Maynard
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 648-666
Technical Paper | Blanket Engineering | doi.org/10.13182/FST82-A20805
Articles are hosted by Taylor and Francis Online.
Cross-section uncertainty covariance matrices are generated and used with sensitivity coefficients to obtain estimates for the uncertainties in design parameters of a particular class of fission-fusion hybrid reactors, the SOLASE-H design. The analysis shows that the uncertainty in the 233U production ratio is ∼4% and is due mostly to errors associated with the lead cross sections. Reducing the uncertainty in the Pb(n,2n'), Pb(n,3n'), and the Pb(n,nonelastic) cross sections, particularly in the energy range of 9 to 20 MeV, will significantly reduce this uncertainty. Improving the Th( n, γ) cross section in the energy range of 0.35 to 3.35 keV can lead to a 40% reduction in the uncertainty in the 233U-breeding ratio. It is found that more accurate evaluation of the Pb(n,nonelastic) cross section in the energy range of 0.73 to 14 MeV can reduce the uncertainty in tritium breeding from 6Li by ∼25%. The uncertainty of only 1% found in the tritium-breeding ratio from 7Li indicates that present nuclear data uncertainties are adequately small. Uncertainty in displacements per atom in Zircaloy-2 cladding due to uncertainties in the Pb(n,inelastic) cross section is small. The analysis reveals the importance of reducing uncertainties in the Th(n,fission) cross sections to minimize the uncertainty in the heating rate from nuclear reactions. It is found that uncertainties in the 6Li(n,α.) cross section are acceptable in calculating the various nuclear parameters of the SOLASE-H design.