ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Masami Ohnishi
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 609-616
Technical Paper | Plasma Engineering | doi.org/10.13182/FST82-A20801
Articles are hosted by Taylor and Francis Online.
Since an ignited deuterium-tritium plasma of a moving ring compact torus reactor (MRCTR) is thermally unstable at the operating temperature, suppression of the thermal instability is an essential issue for maintaining the stationary burning of a plasma. The feedback stabilization by means of major radial compression-decompression is proposed for a burn control in an MRCTR. The compression-decompression is carried out through the regulation of the solenoidal magnetic field according to the deviation of the ion temperature from the equilibrium value. The dynamics of a plasma core with a feedback control is calculated in a zero-dimensional plasma model assuming the empirical confinement scalings obtained in the present tokamak experiments. The effects of ion density on the dynamics are also studied for two extreme cases of complete particle recycling and perfect pumping. The scheme is found to be effective for the burn control. The deviations of a major radius and a fusion output power are less than several percents of the equilibrium values during the control to suppress the temperature excursion. The rate of change in the magnetic field for the control is as slow as 500 G/s.