ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
R. W. Conn, V. K. Dhir, N. M. Ghoniem, D. M. Goebel, S. P. Grotz, F. Kantrowitz, N. S. Kim, T. K. Mau, G. W. Shuy, M. Z. Youssef
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 563-589
Technical Paper | Fusion Reactor | doi.org/10.13182/FST82-A20799
Articles are hosted by Taylor and Francis Online.
A study of barrier tandem mirrors as deuterium-deuterium (D-D) cycle reactors shows that high central cell beta and axisymmetry are crucial to even a moderate Q reactor. The SATYR system is large, with low-power density, and Q ∼ 5 to 6. A specialized axisymmetric configuration involving a plug-barrier cell with a levitated internal ring has been developed, though overall results are independent of the specific axisymmetric end plug configuration. The internal ring thermal analysis, including both surface and neutron volumetric heating, revealed unexpectedly that the operating time between recooling periods is limited by the time to reach the temperature limit of the superinsulator rather than the time for the superconductor to reach some predetermined level (e.g., 12 K for Nb-Ti). Further, it is found that a melt-layer within the ring is not required. A new pressure-vessel-type blanket design with pebble beds of ferritic steel produces high blanket multiplication and has long life (exceeding plant life). The overall study is presented along with detailed analyses in problem topics ranging from reactor physics on the one hand to detailed fusion engineering on the other. Specific subjects analyzed include reactor plasma performance, magnetic configuration development, coil design, blanket nuclear analysis and thermal hydraulics, blanket materials, structural analyses, and lifetime. A detailed comparison of economic, environmental, and safety scaling factors for D-D and deuterium-tritium (D-T) reactors reveals few incentives for aiming at D-D devices. It is concluded that the linearity of tandem mirrors, their inherent modularity and potential for steady-state operation, their predicted high-power density and high Q value, combined with the findings of this study, suggest that optimized D-T-cycle barrier tandem mirror reactors with axisymmetry and high βc have the potential to be economic reactor systems and should remain the major goal of mirror fusion research.