ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. W. Conn, V. K. Dhir, N. M. Ghoniem, D. M. Goebel, S. P. Grotz, F. Kantrowitz, N. S. Kim, T. K. Mau, G. W. Shuy, M. Z. Youssef
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 563-589
Technical Paper | Fusion Reactor | doi.org/10.13182/FST82-A20799
Articles are hosted by Taylor and Francis Online.
A study of barrier tandem mirrors as deuterium-deuterium (D-D) cycle reactors shows that high central cell beta and axisymmetry are crucial to even a moderate Q reactor. The SATYR system is large, with low-power density, and Q ∼ 5 to 6. A specialized axisymmetric configuration involving a plug-barrier cell with a levitated internal ring has been developed, though overall results are independent of the specific axisymmetric end plug configuration. The internal ring thermal analysis, including both surface and neutron volumetric heating, revealed unexpectedly that the operating time between recooling periods is limited by the time to reach the temperature limit of the superinsulator rather than the time for the superconductor to reach some predetermined level (e.g., 12 K for Nb-Ti). Further, it is found that a melt-layer within the ring is not required. A new pressure-vessel-type blanket design with pebble beds of ferritic steel produces high blanket multiplication and has long life (exceeding plant life). The overall study is presented along with detailed analyses in problem topics ranging from reactor physics on the one hand to detailed fusion engineering on the other. Specific subjects analyzed include reactor plasma performance, magnetic configuration development, coil design, blanket nuclear analysis and thermal hydraulics, blanket materials, structural analyses, and lifetime. A detailed comparison of economic, environmental, and safety scaling factors for D-D and deuterium-tritium (D-T) reactors reveals few incentives for aiming at D-D devices. It is concluded that the linearity of tandem mirrors, their inherent modularity and potential for steady-state operation, their predicted high-power density and high Q value, combined with the findings of this study, suggest that optimized D-T-cycle barrier tandem mirror reactors with axisymmetry and high βc have the potential to be economic reactor systems and should remain the major goal of mirror fusion research.