ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. W. Conn, V. K. Dhir, N. M. Ghoniem, D. M. Goebel, S. P. Grotz, F. Kantrowitz, N. S. Kim, T. K. Mau, G. W. Shuy, M. Z. Youssef
Fusion Science and Technology | Volume 2 | Number 4 | October 1982 | Pages 563-589
Technical Paper | Fusion Reactor | doi.org/10.13182/FST82-A20799
Articles are hosted by Taylor and Francis Online.
A study of barrier tandem mirrors as deuterium-deuterium (D-D) cycle reactors shows that high central cell beta and axisymmetry are crucial to even a moderate Q reactor. The SATYR system is large, with low-power density, and Q ∼ 5 to 6. A specialized axisymmetric configuration involving a plug-barrier cell with a levitated internal ring has been developed, though overall results are independent of the specific axisymmetric end plug configuration. The internal ring thermal analysis, including both surface and neutron volumetric heating, revealed unexpectedly that the operating time between recooling periods is limited by the time to reach the temperature limit of the superinsulator rather than the time for the superconductor to reach some predetermined level (e.g., 12 K for Nb-Ti). Further, it is found that a melt-layer within the ring is not required. A new pressure-vessel-type blanket design with pebble beds of ferritic steel produces high blanket multiplication and has long life (exceeding plant life). The overall study is presented along with detailed analyses in problem topics ranging from reactor physics on the one hand to detailed fusion engineering on the other. Specific subjects analyzed include reactor plasma performance, magnetic configuration development, coil design, blanket nuclear analysis and thermal hydraulics, blanket materials, structural analyses, and lifetime. A detailed comparison of economic, environmental, and safety scaling factors for D-D and deuterium-tritium (D-T) reactors reveals few incentives for aiming at D-D devices. It is concluded that the linearity of tandem mirrors, their inherent modularity and potential for steady-state operation, their predicted high-power density and high Q value, combined with the findings of this study, suggest that optimized D-T-cycle barrier tandem mirror reactors with axisymmetry and high βc have the potential to be economic reactor systems and should remain the major goal of mirror fusion research.