ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Peter J. Kortman, Stephen O. Dean
Fusion Science and Technology | Volume 2 | Number 3 | July 1982 | Pages 492-516
Technical Paper | Special Section Contents | doi.org/10.13182/FST82-A20792
Articles are hosted by Taylor and Francis Online.
Progress toward the successful completion of any program improves as the resources available to that program increase. International cooperation is a mechanism that can increase the resources available to the U.S. fusion program. Viewed historically as a science program, the progress in fusion R&D in the United States has been significantly enhanced through this mechanism. However, as fusion moves increasingly into engineering development toward commercial application, the benefits of science exchange may appear to be increasingly counterbalanced by (a) the potential increase in administrative costs and time delays and (b) the opportunity cost associated with sharing potentially proprietary technology information. The transition between fusion development phases (scientific to engineering) requires a reassessment and revamping of the scientific nonstrategy for international cooperation. The assessment of costs and benefits of previous mechanisms for international cooperation provides some fundamental conclusions that should be considered in the development of any new fusion strategy. The major conclusion is that international cooperation will be essential for meeting the U.S. commercial-development milestones, but that this mechanism must be used judiciously with effective U.S. program management. The major recommendations of the study are that the U.S. program should (a) actively pursue playing a significantly stronger leadership role in the international arena, (b) develop a stronger linkage with the Japanese program, and (c) pursue policy that does not require a strong dependency on other programs for the development of critical technology.