ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Mohamed E. Sawan, Gregory A. Moses, Gerald L. Kulcinski
Fusion Science and Technology | Volume 2 | Number 2 | April 1982 | Pages 215-223
Technical Paper | ICF Chamber Engineering | doi.org/10.13182/FST82-A20751
Articles are hosted by Taylor and Francis Online.
Time-dependent neutronics analysis for the ferritic steel first wall of the HIBALL heavy ion beam fusion reactor conceptual design is presented. Neutron target interactions that lead to spectrum softening and neutron multiplication are accounted for. The time-of-flight (TOF) spread of neutrons within each energy group is considered. Neutron slowing down in the INPORT first-wall protection system, which is similar to the HYLIFE concept, is found to significantly affect the time over which the damage occurs in the first wall. In the case of an unprotected wall, the time spread is determined primarily by the TOF spread. The INPORT concept is found to significantly reduce both average and peak instantaneous rates of displacements per atom, helium production, and energy deposition in the first wall.