ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
N. M. Ghoniem, G. L. Kulcinski
Fusion Science and Technology | Volume 2 | Number 2 | April 1982 | Pages 165-198
Overview | doi.org/10.13182/FST82-A20749
Articles are hosted by Taylor and Francis Online.
The effects of pulsed irradiation on the response of materials are reviewed in terms of the basic principles behind the experimental and theoretical efforts in this area. A general background on the phenomena associated with pulsed irradiation in a fusion reactor environment is outlined. It is shown that the systems most likely to have significant dynamic response to pulsed irradiation will be the inertial confinement fusion reactors (ICFRs), and to a lesser degree, the near-term tokamak fusion reactors. A brief description of the magnitudes of radiation damage and the time scales over which damage occurs is given for various fusion reactor concepts. This sets the boundary conditions that need to be considered in analyzing radiation effects in pulsed fusion systems. The work on the primary damage state is reviewed, analyzing the effects of neutrons and ions on the instantaneous damage state of ICFRs. Since the energy deposition manifests itself in the form of damage and heat, the temperature and stress waves accompanying damage in ICFR walls are discussed. The state of knowledge on the microstructure evolution during pulsed irradiation is outlined in detail giving the theoretical principles and experimental observations. Finally, the relationships between the evolving microstructure and properties such as swelling, solute segregation, and irradiation creep in a pulsed irradiation environment are investigated.