The potential of using high energy photons or nucleons for the production of synthetic fuels from inorganic resources with fusion processes is reviewed. Many types of fuels can be generated (e.g., H2, CO, NO, O3, H2S. etc) with plentiful inorganic resources; however, only H2 and CO (considered to be most important as chemical feedstocks and fuels) were thoroughly reviewed. Radiolytic efficiencies of ∼5% for H2 production from H2O and ∼30% for CO production from CO2 have been achieved with standard techniques. These values may be improved through basic research into chemical kinetics, steady-state radiolysis and photolysis, and into advanced areas such as separation, heterogeneous radiolysis, laser-enhanced radiolysis, electrochemical/radiolytic hybrids, and thermochemical/radiolytic hybrids. Due to potential radioactive contamination from the various interfaces, in the near term, two-stage radiolytic techniques (including formation of secondary carriers from excimers and radioisotopes) were considered most promising for producing synthetic fuels from inorganic resources. However, because of constraints imposed by current technology, these two-stage techniques appear most suitable for topping cycles. As advanced fueled reactors are developed, contamination problems are diminished making direct radiolysis more attractive.