ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ihor O. Bohachevsky
Fusion Science and Technology | Volume 2 | Number 1 | January 1982 | Pages 110-119
Technical Paper | ICF Chamber Engineering | doi.org/10.13182/FST82-A20741
Articles are hosted by Taylor and Francis Online.
Many inertial confinement fusion reactors will employ liquid lithium to breed tritium, to remove heat from reactor vessels, and to protect the interior walls of the vessel. Heat loads on the liquid lithium will consist of intense pulses that are short in comparison to hydrodynamic and thermal relaxation times and therefore will generate pressure pulses and/or pressure waves. The generation process is investigated analytically and numerically. Analytic solutions are derived for liquid blankets with thicknesses comparable to the neutron energy deposition depth contained between two structural shells and for free surface layers with thicknesses much smaller than the depth of neutron energy deposition. Results indicate that the amplitudes of the neutron-generated pressure waves are comparable to the mean pressure rise that would be obtained if the energy were deposited so slowly and uniformly that the waves did not develop. Numerically investigated are pressure pulses in lithium layers, which are initially at the vapor pressure. Results indicate that rapid heating occurs at constant specific volume (isochorically) and therefore results in a sharp and intense pressure rise. However, the resulting pressure wave dissipates after propagating only a few millimetres through the layer if the lithium contains any fraction of the vapor phase.