ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
J. Reece Roth
Fusion Science and Technology | Volume 2 | Number 1 | January 1982 | Pages 29-42
Overview | doi.org/10.13182/FST82-A20732
Articles are hosted by Taylor and Francis Online.
The consequences are assessed of a common set of engineering constraints on the characteristics of fusion reactors that employ deuterium-tritium (D-T), advanced, and exotic fusion fuel cycles. A set of uniform assumptions is made regarding blanket costs, wall loading limits, fusion power density limits, radio-frequency technologies, etc. From these common constraints, the regimes of ion number density, ion kinetic temperature, and plasma stability index β, which lead to attractive fusion reactors, are found. It is demonstrated that if tokamaks are restricted to values of β < 0.05, no fuel cycle other than D-T is compatible with currently accepted engineering constraints. The catalyzed deuterium-deuterium and the D-3He reactions are attractive for values of β > ∼0.20. It is found that the charged particle or “neutron-free” reactions such as ρ-6Li, even if ignitible, are inconsistent with engineering constraints, even at β = 1.0, because of their low reactivity. As expected, the D-T reaction allows the widest range of operating parameters because of its high reactivity. However, it can be used only with difficulty at high values of β because of wall loading limitations. Finally, the limitations imposed by electron cyclotron resonance heating (ECRH) of the plasma are examined. It is found that the cutoff density implied by ECRH (above which radiation is reflected from the plasma) places a serious additional constraint on the accessible operating regime of some advanced fuel fusion reactors.