ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
J. Reece Roth
Fusion Science and Technology | Volume 2 | Number 1 | January 1982 | Pages 29-42
Overview | doi.org/10.13182/FST82-A20732
Articles are hosted by Taylor and Francis Online.
The consequences are assessed of a common set of engineering constraints on the characteristics of fusion reactors that employ deuterium-tritium (D-T), advanced, and exotic fusion fuel cycles. A set of uniform assumptions is made regarding blanket costs, wall loading limits, fusion power density limits, radio-frequency technologies, etc. From these common constraints, the regimes of ion number density, ion kinetic temperature, and plasma stability index β, which lead to attractive fusion reactors, are found. It is demonstrated that if tokamaks are restricted to values of β < 0.05, no fuel cycle other than D-T is compatible with currently accepted engineering constraints. The catalyzed deuterium-deuterium and the D-3He reactions are attractive for values of β > ∼0.20. It is found that the charged particle or “neutron-free” reactions such as ρ-6Li, even if ignitible, are inconsistent with engineering constraints, even at β = 1.0, because of their low reactivity. As expected, the D-T reaction allows the widest range of operating parameters because of its high reactivity. However, it can be used only with difficulty at high values of β because of wall loading limitations. Finally, the limitations imposed by electron cyclotron resonance heating (ECRH) of the plasma are examined. It is found that the cutoff density implied by ECRH (above which radiation is reflected from the plasma) places a serious additional constraint on the accessible operating regime of some advanced fuel fusion reactors.