ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Alan J. Hoffman, Houyang Y. Guo, John T. Slough, Stephen J. Tobin, Louis S. Schrank, William A. Reass, Glen A. Wurden
Fusion Science and Technology | Volume 41 | Number 2 | March 2002 | Pages 92-106
Technical Paper | doi.org/10.13182/FST02-A205
Articles are hosted by Taylor and Francis Online.
Field-reversed configurations (FRCs) have extremely attractive reactor attributes because of their singly connected geometry. They have been created in theta-pinch devices, but being compact toroids and lacking a center hole, their toroidal current cannot be sustained by transformer action as in other toroidal configurations. A new device, the Translation, Confinement, and Sustainment (TCS) facility has been constructed to use rotating magnetic fields (RMFs) to build up and sustain the flux of hot FRCs formed by the normal theta-pinch method. RMF formation and sustainment of similar, but cold, pure poloidal field configurations have been demonstrated in devices called rotamaks, and RMF formation, but not sustainment, has been achieved in a smaller FRC facility called the Star Thrust Experiment (STX). Initial formation and sustainment have now been achieved in TCS, albeit still with cold (Te ~ 50 eV) plasmas. Both the formation and final steady-state conditions are found to agree with newly developed analytic and numerical models for RMF flux buildup and sustainment inside a standard cylindrical flux conserver. The required plasma conditions (mainly resistivity but also density) can now be determined for the planned hot FRC, RMF flux buildup experiments and for eventual reactor conditions.