ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Kazunari Katayama, Masabumi Nishikawa
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 53-62
Technical Paper | doi.org/10.13182/FST02-A200
Articles are hosted by Taylor and Francis Online.
The behavior of tritium at removal from graphite material for a fusion reactor is discussed. The mass transfer coefficient representing the isotope exchange reaction between hydrogen isotopes in the gas stream and tritium existing on graphite surfaces and that between water vapor in the gas stream and tritium on the surface are quantified. It was found that the reaction rate between hydrogen isotopes in the gas stream and tritium on the surface is much slower than that between water vapor in the gas stream and tritium on the surface. And, the release behavior of tritium from a graphite particle to the gas phase is calculated with the reaction rates obtained in this study using the solubility and the diffusion coefficient of hydrogen isotopes in graphite that have been presented in the previous report by the authors. A way to remove tritium from a graphite surface applying the isotope exchange reaction between water vapor in the gas stream and tritium on the surface turns out to be effective at the room temperature, although a temperature >1000 K is needed to release tritium from the bulk of a 10-m graphite particle.