ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Kazunari Katayama, Masabumi Nishikawa
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 53-62
Technical Paper | doi.org/10.13182/FST02-A200
Articles are hosted by Taylor and Francis Online.
The behavior of tritium at removal from graphite material for a fusion reactor is discussed. The mass transfer coefficient representing the isotope exchange reaction between hydrogen isotopes in the gas stream and tritium existing on graphite surfaces and that between water vapor in the gas stream and tritium on the surface are quantified. It was found that the reaction rate between hydrogen isotopes in the gas stream and tritium on the surface is much slower than that between water vapor in the gas stream and tritium on the surface. And, the release behavior of tritium from a graphite particle to the gas phase is calculated with the reaction rates obtained in this study using the solubility and the diffusion coefficient of hydrogen isotopes in graphite that have been presented in the previous report by the authors. A way to remove tritium from a graphite surface applying the isotope exchange reaction between water vapor in the gas stream and tritium on the surface turns out to be effective at the room temperature, although a temperature >1000 K is needed to release tritium from the bulk of a 10-m graphite particle.