ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
R. A. Lillie, T. A. Gabriel, B. L. Bishop, V-C. Baker
Fusion Science and Technology | Volume 1 | Number 4 | October 1981 | Pages 542-551
Technical Paper | Shielding | doi.org/10.13182/FST81-A19947
Articles are hosted by Taylor and Francis Online.
One-dimensional radiation transport calculations have been performed to obtain estimates of the nuclear heat loads and biological dose rates due to bremsstrahlung gamma rays and photoneutrons in the ELMO Bumpy Torus proof of principle device. The bremsstrahlung gamma rays arise because of electron impingement on the magnetic coil assemblies, and these gamma rays in turn produce photoneutrons through interactions in the high-Z shielding materials. For a 1-MW electron power loss, 238U and tungsten coil shield thicknesses of ∼22.5 and 27.3 mm, respectively, were found sufficient to limit the nuclear heat load on a single superconducting coil to 10 W. The estimated lead and concrete primary shield thicknesses required to reduce the biological dose rate due to bremsstrahlung gamma rays to 2.5 mrem/h were calculated to be 0.318 and 1.92 m, respectively. Because of photoneutron production, however, lead by itself was not found to be an acceptable biological shield.