ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. A. Prelas, G. H. Miley
Fusion Science and Technology | Volume 1 | Number 3 | July 1981 | Pages 402-413
Technical Paper | Advanced Laser | doi.org/10.13182/FST81-A19940
Articles are hosted by Taylor and Francis Online.
The first successful modeling of an impurity-type nuclear pumped laser (NPL) (i.e., one that employs trace densities of the lasing species in a noble gas buffer), atomic carbon at 1.45 μm, was achieved. Such NPLs are important due to their low flux threshold and quasi-steady-state oscillation. The atomic carbon NPL is unique in that time delays up to 5 ms are observed between the laser signal and the excitation pulse in helium + CO2 mixtures while no delay is observed in helium + CO. Using a kinetic model in conjunction with an experimental program, we show that this difference in delay arises from slow dissociation of CO2 to form CO. Significantly, the model also successfully simulates electrical pumping of He-CO or CO2 mixtures.