ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert R. Peterson, Gregory A. Moses, Gary W. Cooper
Fusion Science and Technology | Volume 1 | Number 3 | July 1981 | Pages 377-389
Technical Paper | ICF | doi.org/10.13182/FST81-A19938
Articles are hosted by Taylor and Francis Online.
The criteria governing the choice of cavity gas for light-ion-beam fusion reactors have been investigated. Possible mechanisms of laser initiation of plasma discharge channels and the effects of cavity gas choice on one of the most promising mechanisms are discussed. The shock overpressure and the thermal heat flux experienced by the first wall are studied for a variety of cavity gases. Small amounts of alkali metal vapors are found to be useful in both limiting the thermal heat flux and initiating the plasma channels. A 50-Torr argon cavity gas with a 0.2% sodium impurity has been found to allow both efficient laser channel initiation and first-wall survivability.