ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. A. Hoffman, A. S. Blum
Fusion Science and Technology | Volume 1 | Number 2 | April 1981 | Pages 275-284
Technical Paper | Fusion | doi.org/10.13182/FST81-A19929
Articles are hosted by Taylor and Francis Online.
The conceptual design of a vacuum pumping system to handle a large gas flow on the order of 2.31 Pa m3/s (17.3 standard (std) Torr/s) of helium gas in the pressure range from ∼ 3.1 × 10−2 down to 4.0 × 10−4 Pa (2.3 × 10−4 down to 3 × 10−6Torr) is described. The neutral helium gas originates partly as leakage from the plasma ion source and partly as additional gas required in the neutralizer duct of the neutral beam injector. The vacuum pumping design is based on the recently demonstrated process of cryotrapping the helium in a frost layer of argon formed by spraying the argon onto a liquid-helium-cooled cryopanel surface. About 10.6 m2 of cryopanel area in the ducts and chambers of the injector is required for an allowed frost thickness of 1 mm. The design is based on preliminary experimental results that indicated that ∼15 atoms of argon were needed to pump and cryotrap each helium atom, and that the specific pumping speed of the fully baffled cryopanels would be ∼31.5 std m3/m2⋅s (3.15 std⋅FS./cm2⋅s). Preliminary estimates of costs indicate that this vacuum system can cost as much as 74% of the entire neutral beam injector and that the LHe cryo-refrigerator alone can cost 24% of the total direct cost. The design points up the problem areas of cryotrapping helium and the need for clever new design concepts and improved performance to reduce costs.