ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
M. A. Hoffman, A. S. Blum
Fusion Science and Technology | Volume 1 | Number 2 | April 1981 | Pages 275-284
Technical Paper | Fusion | doi.org/10.13182/FST81-A19929
Articles are hosted by Taylor and Francis Online.
The conceptual design of a vacuum pumping system to handle a large gas flow on the order of 2.31 Pa m3/s (17.3 standard (std) Torr/s) of helium gas in the pressure range from ∼ 3.1 × 10−2 down to 4.0 × 10−4 Pa (2.3 × 10−4 down to 3 × 10−6Torr) is described. The neutral helium gas originates partly as leakage from the plasma ion source and partly as additional gas required in the neutralizer duct of the neutral beam injector. The vacuum pumping design is based on the recently demonstrated process of cryotrapping the helium in a frost layer of argon formed by spraying the argon onto a liquid-helium-cooled cryopanel surface. About 10.6 m2 of cryopanel area in the ducts and chambers of the injector is required for an allowed frost thickness of 1 mm. The design is based on preliminary experimental results that indicated that ∼15 atoms of argon were needed to pump and cryotrap each helium atom, and that the specific pumping speed of the fully baffled cryopanels would be ∼31.5 std m3/m2⋅s (3.15 std⋅FS./cm2⋅s). Preliminary estimates of costs indicate that this vacuum system can cost as much as 74% of the entire neutral beam injector and that the LHe cryo-refrigerator alone can cost 24% of the total direct cost. The design points up the problem areas of cryotrapping helium and the need for clever new design concepts and improved performance to reduce costs.