ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. H. Berwald, J. A. Maniscalco
Fusion Science and Technology | Volume 1 | Number 1 | January 1981 | Pages 137-159
Technical Paper | Fusion | doi.org/10.13182/FST81-A19922
Articles are hosted by Taylor and Francis Online.
An analysis of the potential performance and economic characteristics of several laser fusion breeder reactor (i.e., fusion-fission hybrid) fueled electricity generation systems has been performed. Fusion breeders resulting from several recent conceptual design studies are considered. These are distinguished from one another by the utilization of one of several generic breeder blanket options including a uranium fast fission blanket, a thorium fast fission blanket, a uranium-thorium fast fission blanket, and a thorium-suppressed fission blanket (first time introduced). On the fission side of the system, light water reactors (LWRs), which primarily burn 233U (but also some plutonium), were considered. The fission fuel cycle characteristics and relative proliferation resistance of the various symbiotic electricity generation systems are examined. The results of the economic analysis indicate that systems utilizing LWRs and any of the four breeder blanket concepts can produce electricity for ∼25 to 35% above the cost of electricity produced by a new LWR operating on the current once-through fuel cycle. The laser fusion breeders are predicted to become competitive (as an LWR fuel source) with conventional mined sources of U3O8 when the price of U3O8 reaches about $300/kg (1980 dollars). The results suggest that fusion breeders could supply most or all of our fissile fuel makeup requirements within ∼20 yr after commercial introduction (possibly in 2010) and have nearly unlimited capabilities to support a growing system of LWRs or advanced converter reactors.