ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
D. H. Berwald, J. A. Maniscalco
Fusion Science and Technology | Volume 1 | Number 1 | January 1981 | Pages 137-159
Technical Paper | Fusion | doi.org/10.13182/FST81-A19922
Articles are hosted by Taylor and Francis Online.
An analysis of the potential performance and economic characteristics of several laser fusion breeder reactor (i.e., fusion-fission hybrid) fueled electricity generation systems has been performed. Fusion breeders resulting from several recent conceptual design studies are considered. These are distinguished from one another by the utilization of one of several generic breeder blanket options including a uranium fast fission blanket, a thorium fast fission blanket, a uranium-thorium fast fission blanket, and a thorium-suppressed fission blanket (first time introduced). On the fission side of the system, light water reactors (LWRs), which primarily burn 233U (but also some plutonium), were considered. The fission fuel cycle characteristics and relative proliferation resistance of the various symbiotic electricity generation systems are examined. The results of the economic analysis indicate that systems utilizing LWRs and any of the four breeder blanket concepts can produce electricity for ∼25 to 35% above the cost of electricity produced by a new LWR operating on the current once-through fuel cycle. The laser fusion breeders are predicted to become competitive (as an LWR fuel source) with conventional mined sources of U3O8 when the price of U3O8 reaches about $300/kg (1980 dollars). The results suggest that fusion breeders could supply most or all of our fissile fuel makeup requirements within ∼20 yr after commercial introduction (possibly in 2010) and have nearly unlimited capabilities to support a growing system of LWRs or advanced converter reactors.