ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Magdi M. H. Ragheb, Andrew C. Klein, Charles W. Maynard
Fusion Science and Technology | Volume 1 | Number 1 | January 1981 | Pages 99-119
Technical Paper | Fusion | doi.org/10.13182/FST81-A19919
Articles are hosted by Taylor and Francis Online.
Three-dimensional Monte Carlo neutronics calculations for the last mirror-beam duct system for a laser-driven fusion power reactor conceptual design, where a three-section duct with focusing mirrors and right angle bends for the last two beam reflections is modeled. The estimate of neutron leakage flux after the second beam reflection is on the order of 1014 n/(m2⋅s). Even though less in magnitude than the flux at the end point of neutral beam injectors in tokamak designs, reported in the range of 1017 n/(m2⋅s), this still leads to a neutron dose rate of 106 remjh after the second beam bend. Since space is not at a premium as in the case of magnet shields for magnetic confinement systems, minimum-cost lead mortar or concrete can be used as shielding materials instead of other minimum-thickness costly materials. An energy leakage rate of 4.6 MW of 14-MeV neutrons per beam precludes the use of concrete behind the last mirror, suggesting the use of a secondary blanket composed of a lead acetate solution with immersed Boral (Al + B4C) sheets. Boral as a penetration shielding material is found to reduce the thermal group flux around the penetration by two to three orders of magnitude, compared to aluminum, and is recommended as a duct lining material for both inertial and magnetic fusion systems. Neutron heating rates and radiation damage parameters for the duct liner compare to those at the front face of the last mirror and first wall, and will require similar elaborate thermal-hydraulic and mechanical designs.