ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
John P. Holdren
Fusion Science and Technology | Volume 1 | Number 1 | January 1981 | Pages 79-89
Technical Paper | Fusion | doi.org/10.13182/FST81-A19917
Articles are hosted by Taylor and Francis Online.
Release of neutron-activation products in severe hypothetical fusion-reactor accidents may constitute a larger health hazard than that of the tritium released at the same time. Significant escape of activation products could result from lithium fires hot enough to melt and partly vaporize activated first-wall materials, or from other accident sequences that bring air into contact with activated structure hot enough to cause the formation of volatile metal oxides. Analysis of three combinations of structural materials and severe accident scenarios has been undertaken for an early conceptual tokamak reactor, using a simple consequence model based on that of the Nuclear Regulatory Commission's Reactor Safety Study (the Rasmussen report) to determine conceivable radiation doses near the plant boundary. (No attempt was made to estimate probabilities for such severe events.) In the cases of stainless-steel and molybdenum structures subject to massive lithium fires, the boundary doses far exceed those that would be produced by release of the entire plant inventory of tritium and are comparable to the doses similarly calculated for “worst case” light water reactor accidents. The case of niobium fusion-reactor structure is more favorable. These results, based on an early fusion-reactor design not optimized with respect to safety characteristics, may well portray a worst case picture of fusion accident consequences. They suggest, however, that the large potential safety advantages of fusion compared to fission are not necessarily inherent for all designs and choices of materials, and they motivate attention to the several available strategies for greatly reducing the potential for activation-product release from fusion reactors.