ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Fermín Cuevas, José Francisco Fernandáz, Carlos Sánchez*
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 644-654
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Nuclear Reactions in Solid | doi.org/10.13182/FST97-A19909
Articles are hosted by Taylor and Francis Online.
The possible occurrence of nuclear reactions in solids (NRS) is tested in a well-characterized iodide-titanium film after a high deuterium loading. This film proves to have a higher purity than common titanium samples used in NRS experiments. The titanium deuteration is accomplished in the same chamber where the film is grown to avoid any superficial contamination of the sample. A complete set of NRS experiments is performed, checking as triggering mechanisms of the NRS phenomena the imposition of different electric fields and the crossing of the δ-ϵ and β-δ boundary phases of the Ti-D system. Neutron measurements are monitored while doing these experiments, and no clear evidence of the nuclear fusion reaction D + D → 3He + n is detected; the detection limit for this reaction is Λ = 3 × 10−21 fusions per pair of deuterons per second. However, some anomalous neutron signals are monitored by one of the detectors, which makes further investigation desirable.