ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Fermín Cuevas, José Francisco Fernandáz, Carlos Sánchez*
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 644-654
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Nuclear Reactions in Solid | doi.org/10.13182/FST97-A19909
Articles are hosted by Taylor and Francis Online.
The possible occurrence of nuclear reactions in solids (NRS) is tested in a well-characterized iodide-titanium film after a high deuterium loading. This film proves to have a higher purity than common titanium samples used in NRS experiments. The titanium deuteration is accomplished in the same chamber where the film is grown to avoid any superficial contamination of the sample. A complete set of NRS experiments is performed, checking as triggering mechanisms of the NRS phenomena the imposition of different electric fields and the crossing of the δ-ϵ and β-δ boundary phases of the Ti-D system. Neutron measurements are monitored while doing these experiments, and no clear evidence of the nuclear fusion reaction D + D → 3He + n is detected; the detection limit for this reaction is Λ = 3 × 10−21 fusions per pair of deuterons per second. However, some anomalous neutron signals are monitored by one of the detectors, which makes further investigation desirable.