ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Malcolm W. McGeoch, Patrick A. Corcoran, Robert G. Altes, Ian D. Smith, Stephen E. Bodner, Robert H. Lehmberg, Stephen P. Obenschain, John D. Sethian
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 610-643
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / ICF Driver Technology | doi.org/10.13182/FST97-A19908
Articles are hosted by Taylor and Francis Online.
A detailed KrF amplifier model is first benchmarked against new data and then used to design higher-energy modules with segmented pumping. It is found that segmentation with unpumped regions does not carry with it any penalty in efficiency because the distributed geometry has reduced losses from amplified spontaneous emission (ASE) that counteract the fluorine absorption of unpumped regions. A 68-kJ module is designed, incorporating a new water line geometry and a combined switch/bushing. The electrical parameters of the module are calculated in detail. The effect of multiplexed beam-line energy on facility size is discussed, and an energy of 100 to 200 kJ is found to be optimal. Two 68-kJ modules are combined in a 136-kJ multiplexed beam line, incorporating incoherent spatial imaging, that fits within a compact beam tunnel. A total of 16 such beam lines are arranged on four floors to deliver 64 beams to a target; the net energy is 2.0 MJ. Detailed calculations of prepulse ASE energy are given, and the levels are designed to be low enough not to initiate a prepulse plasma. The basic geometrical uniformity of target illumination is shown to be better than 0.3% for a 64-beam illumination geometry that has a high degree of symmetry. A test of the 68-kJ module would be necessary to verify the projected specific laser energy and facilitate more detailed design of this fusion laser.