ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Malcolm W. McGeoch, Patrick A. Corcoran, Robert G. Altes, Ian D. Smith, Stephen E. Bodner, Robert H. Lehmberg, Stephen P. Obenschain, John D. Sethian
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 610-643
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / ICF Driver Technology | doi.org/10.13182/FST97-A19908
Articles are hosted by Taylor and Francis Online.
A detailed KrF amplifier model is first benchmarked against new data and then used to design higher-energy modules with segmented pumping. It is found that segmentation with unpumped regions does not carry with it any penalty in efficiency because the distributed geometry has reduced losses from amplified spontaneous emission (ASE) that counteract the fluorine absorption of unpumped regions. A 68-kJ module is designed, incorporating a new water line geometry and a combined switch/bushing. The electrical parameters of the module are calculated in detail. The effect of multiplexed beam-line energy on facility size is discussed, and an energy of 100 to 200 kJ is found to be optimal. Two 68-kJ modules are combined in a 136-kJ multiplexed beam line, incorporating incoherent spatial imaging, that fits within a compact beam tunnel. A total of 16 such beam lines are arranged on four floors to deliver 64 beams to a target; the net energy is 2.0 MJ. Detailed calculations of prepulse ASE energy are given, and the levels are designed to be low enough not to initiate a prepulse plasma. The basic geometrical uniformity of target illumination is shown to be better than 0.3% for a 64-beam illumination geometry that has a high degree of symmetry. A test of the 68-kJ module would be necessary to verify the projected specific laser energy and facilitate more detailed design of this fusion laser.