ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Malcolm W. McGeoch, Patrick A. Corcoran, Robert G. Altes, Ian D. Smith, Stephen E. Bodner, Robert H. Lehmberg, Stephen P. Obenschain, John D. Sethian
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 610-643
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / ICF Driver Technology | doi.org/10.13182/FST97-A19908
Articles are hosted by Taylor and Francis Online.
A detailed KrF amplifier model is first benchmarked against new data and then used to design higher-energy modules with segmented pumping. It is found that segmentation with unpumped regions does not carry with it any penalty in efficiency because the distributed geometry has reduced losses from amplified spontaneous emission (ASE) that counteract the fluorine absorption of unpumped regions. A 68-kJ module is designed, incorporating a new water line geometry and a combined switch/bushing. The electrical parameters of the module are calculated in detail. The effect of multiplexed beam-line energy on facility size is discussed, and an energy of 100 to 200 kJ is found to be optimal. Two 68-kJ modules are combined in a 136-kJ multiplexed beam line, incorporating incoherent spatial imaging, that fits within a compact beam tunnel. A total of 16 such beam lines are arranged on four floors to deliver 64 beams to a target; the net energy is 2.0 MJ. Detailed calculations of prepulse ASE energy are given, and the levels are designed to be low enough not to initiate a prepulse plasma. The basic geometrical uniformity of target illumination is shown to be better than 0.3% for a 64-beam illumination geometry that has a high degree of symmetry. A test of the 68-kJ module would be necessary to verify the projected specific laser energy and facilitate more detailed design of this fusion laser.