ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
W. M. Stacey,* J. A. Favorite, M. J. Belanger, R. D. Granberg, S. L. Grimm, F. A. Kelly, S. Klima, J. S. Lahr, E. D. Mckamey, M. S. Mckinley, G. M. Nicholson, D. C. Norris, R. Rubilar, Z. L. Sasnett, G. J. Shott, M. J. Stinson, M. R. Sutton, A. H. Thatcher, R. J. Turmel, K. G. Veinot
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 563-589
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Nonelectrical Application | doi.org/10.13182/FST97-A19905
Articles are hosted by Taylor and Francis Online.
A concept is presented for a fusion neutron source based tritium production reactor called the Tokamak Tritium Production Reactor (TTPR), which could meet the U.S. needs for replenishment of weapons tritium during the first half of the next century. The TTPR concept is based on physics and technology that either exists or is being developed and will be tested under integrated, prototypical conditions in the International Thermonuclear Experimental Reactor (ITER). The TTPR can provide 2 kg/yr tritium for weapons replenishment operating at a fusion power level of 500 to 1000 MW and at a plant factor of 10 to 25%. No structural component should need to be replaced because of radiation damage during the 40-yr lifetime of the TTPR, and it should be possible to dispose of the TTPR on decommissioning as low-level waste that qualifies for shallow land burial.