ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jonathan W. Morrow-Jones*, Marc A. Firestone, Tak Kuen Mau
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 526-544
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Instrumentation Control and Data Handling | doi.org/10.13182/FST97-A19903
Articles are hosted by Taylor and Francis Online.
The modeling steps needed to create dynamically based automated control of tokamak plasmas are traced. This involves integrating models of current/magnetic-flux dynamics; plasma transport; plasma geometry; and source terms, such as lower hybrid, fast wave, and pellet-fueling deposition. Perturbative analysis of these models then yields the linear response of the tokamak to changes in coil voltages, applied radio-frequency power, or pellet-firing frequency. Comparison of the linear response models to nonlinear numerical calculations reveals that the plasma position and shape modeling will require future refinements.