ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
J. Wesley,* H.-W. Bartels, D. Boucher, A. Costley, L. De Kock, Yu. Gribov, M. Huguet, G. Janeschitz, P.-L. Mondino, V. Mukhovatov, A. Portone, M. Sugihara, I. Yonekawa
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 495-525
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Instrumentation Control and Data Handling | doi.org/10.13182/FST97-A19902
Articles are hosted by Taylor and Francis Online.
Plasma control requirements for the International Thermonuclear Experimental Reactor (ITER) are identified, and an overview of proposed ITER plasma control concepts is presented, ITER will operate with a burning deuterium-tritium plasma to produce 1.5 GW of fusion power for durations of 1000 s or more. Key plasma control requirements to achieve these objectives encompass (a) plasma scenario and sequencing: plasma initiation, current rampup, divertor formation, auxiliary heating, ignition and burn, deignition (fusion power shutdown), and current rampdown and termination; (b) plasma magnetics control: plasma current and shape (R0, a, κ, δ) versus time, plus control of critical plasma-to-first-wall clearance gaps, including ion-cyclotron coupling gap and divertor magnetic configuration, during the diverted heating/ignition/burn/deignition phase of the plasma scenario; (c) plasma kinetics and divertor control: core plasma density and/or fusion power, core impurity content and/or radiated power fraction; core profile control (auxiliary heating and/or current drive), and divertor control (pumping, in-divertor gas and/or impurity injection and magnetic configuration optimization for divertor performance); and (d) fast plasma shutdown: fusion power and current shutdown by means of impurity injection. Physics and hardware concepts are presented as to how these plasma control functions will be implemented. Diagnostic measurements needed for plasma control are summarized. The relationship of plasma control to machine protection and public safety is also addressed.