ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Thomas Elevant, Hans E. Brelén, Per G. Lindén, Jan Scheffel
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 304-318
Technical Paper | Experimental Device | doi.org/10.13182/FST97-A19900
Articles are hosted by Taylor and Francis Online.
In the next generation of magnetic fusion experiments, such as the International Thermonuclear Experimental Reactor (ITER), information on ion temperature profiles will be needed for burn optimization and transport studies. The feasibility of obtaining these profiles for the core plasma (r < 0.75 of minor radius) directly from the width of measured 14-MeV neutron energy spectra is demonstrated for Maxwellian ion distributions. Neutron energy spectra are calculated using the Monte Carlo technique. Reaction kinematics and velocity distribution of the reacting ions are taken into account, which enables the resulting neutron flux and energy distribution entering a defined collimator to be calculated. Energy spectra of neutrons emitted along a line of sight (LOS) are obtained by adding the contributions from a large number of subvolumes. The associated correction factor (peak temperature over LOS measured temperature) depends on the ion temperature and on the shapes of the temperature and density profiles. The resulting accuracy in the evaluated ion temperature profiles is expected to be better than ± 10%. However, this can be improved to ±5% provided that the ion density profile shape is known. The relative accuracy is estimated to be better than ±5%. Features of several spectrometer candidates are briefly described in relation to ITER conditions and measurement requirements. A time-of-flight (TOF) neutron spectrometer is outlined. Experiments with a test device confirm the calculated energy resolution and separation of neutron from gamma events. The spectrometer is shown to be applicable to ITER under both ohmically heated and ignited conditions. A feedback system will be used to control the detector count rate at high neutron flux levels to accommodate the large dynamic neutron flux range from 5 × 106 to 5 × 1010 n/(cm2 · s). An array of five to nine TOF spectrometers provides ion temperature profiles that satisfy ITER measurement requirements, i.e., Ti ≥ 2.5 keV; 10% accuracy; and spatial and temporal resolutions of 30 cm and 100 ms, respectively.