ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Benjamin V. Robouch, Vadim I. Volosov, Aleksandr A. Ivanov, Yurii A. Tsidulko, Yurii N. Zouev, Luigi Ingrosso, Jan S. Brzosko
Fusion Science and Technology | Volume 41 | Number 1 | January 2002 | Pages 44-52
Technical Paper | doi.org/10.13182/FST02-A199
Articles are hosted by Taylor and Francis Online.
A summarized update of neutronic studies on the Novosibirsk Gas Dynamic Trap (GDT) fusion material irradiation facility (FMIF) is presented. The GDT-FMIF neutron source project is based on a mirror-type machine designed to produce 1018 D-T neutrons/s over 10 yr (3 × 1026 neutrons). The proposed massive shielding, susceptible to further shield reductions and optimization, ensures proper shielding against radiation and/or heat overdeposition in accordance with project tolerances. The present shield configuration allows 3.3 m3 of irradiation space around the plasma column: 0.06 m3 receives 0.3 × 1014 thermonuclear uncollided 14-MeV nDT-neutrons/cm2s (0.5 MW/m2), and 0.7 × 1014 with collision degraded energies (~0.7 MW/m2 total), over 7 of the 8 m of intense flux axial length, the largest nontokamak availability. This allows the irradiation of large (up to 4.5 m long) life-size components (such as welds). The delivered neutron flux relative-gradients are small (< 6.3%/cm). Simulations use the 3DAMC-VINIA Monte Carlo code in its expanded version (drizzle-shower technique, two-step cascade, etc.), ENDF/B6 and EPDL nuclear data files, and a precise model of critical parts of the GDT. Results demonstrate that the GDT-FMIF is a very suitable irradiation test facility as per International Energy Agency specifications for an FMIF. With its 37.5-cm free depth of test space, GDT is the only dedicated facility suitable for a life-size blanket-tritium-breeding/extraction benchmark at a significant neutron flux level (2 MW/m2).