ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Peter Mioduszewski
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 277-286
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19897
Articles are hosted by Taylor and Francis Online.
The purpose of a volumetric neutron source is the development and testing of the nuclear components of a fusion reactor. The main issue in this case is very long pulse operation, such as 2 weeks at a time, to elicit the nuclear effects to be studied. Operation at this pulse length will cause extreme erosion if the edge plasma cannot be tailored appropriately. Typical erosion rates that can be expected at some of the plasma-facing components such as the divertor target or the divertor baffles, without specifying a particular type of device, are analyzed. Accurate predictions of erosion and redeposition require not only knowledge of the erosion mechanism but also detailed knowledge of the plasma parameters, plasma flows, and their spatial distributions, as well as temperature distributions of plasma-facing components and other parameters. It is, therefore, a very difficult task to predict erosion/redeposition rates and patterns for future machines. Nevertheless, some estimate is needed of expected erosion rates, crude as they may be, so future machines for long-pulse operation can be designed. For that purpose, physical sputtering is examined only as a basis for erosion estimates and does not take into account the important processes of chemical sputtering and radiation-enhanced sublimation or the complicated redeposition processes. Even with this simplified approach, one can grasp the order of magnitude of erosion rates that will be encountered when a plasma device is operated for long pulses and at high-duty cycles.