ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Ralf-Dieter Penzhorn, Uwe Berndt, Erhard Kirste, Jacqueline Chabot
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 232-245
Technical Paper | Tritium System | doi.org/10.13182/FST97-A19893
Articles are hosted by Taylor and Francis Online.
The permeation of protium, deuterium, and an equimolar deuterium-tritium mixture through finger-type Pd-Ag permeators of various configurations operated either in/out or out/in has been compared in parametric studies. The parameters included the permeate pressures; the feed-and-bleed flow rates; and the feed-gas composition, i.e., helium, Q2, and CQ4 (Q-hydrogen, deuterium, tritium). Results on the dependence of the hydrogen isotope breakthrough into the bleed-gas stream and thus on hydrogen isotope decontamination factors were obtained as a function of feed-gas flow. The observed isotopic effects are large, i.e., H2/D2 = 1.72 ± 0.03 and H2/DT = 2.06 ± 0.03. No evidence of permeator deterioration was observed after 1.5 yr of discontinuous operation with hydrogen isotopes—mostly deuterium-tritide. In situ evidence on the integrity of a Pd-Ag permeator was obtained from empirical permeation curves, helium leak measurements, and hydrogen isotope breakthrough curves. Methane poisons Pd-Ag slowly but progressively at 360°C. When the hydrogens in methane are replaced by tritium, the rate of poisoning considerably increases, and after a few days, the overall poisoning becomes severe. The poisoning by hydrocarbons can be completely reversed by heat treatment in laboratory air.