ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ralf-Dieter Penzhorn, Uwe Berndt, Erhard Kirste, Jacqueline Chabot
Fusion Science and Technology | Volume 32 | Number 2 | September 1997 | Pages 232-245
Technical Paper | Tritium System | doi.org/10.13182/FST97-A19893
Articles are hosted by Taylor and Francis Online.
The permeation of protium, deuterium, and an equimolar deuterium-tritium mixture through finger-type Pd-Ag permeators of various configurations operated either in/out or out/in has been compared in parametric studies. The parameters included the permeate pressures; the feed-and-bleed flow rates; and the feed-gas composition, i.e., helium, Q2, and CQ4 (Q-hydrogen, deuterium, tritium). Results on the dependence of the hydrogen isotope breakthrough into the bleed-gas stream and thus on hydrogen isotope decontamination factors were obtained as a function of feed-gas flow. The observed isotopic effects are large, i.e., H2/D2 = 1.72 ± 0.03 and H2/DT = 2.06 ± 0.03. No evidence of permeator deterioration was observed after 1.5 yr of discontinuous operation with hydrogen isotopes—mostly deuterium-tritide. In situ evidence on the integrity of a Pd-Ag permeator was obtained from empirical permeation curves, helium leak measurements, and hydrogen isotope breakthrough curves. Methane poisons Pd-Ag slowly but progressively at 360°C. When the hydrogens in methane are replaced by tritium, the rate of poisoning considerably increases, and after a few days, the overall poisoning becomes severe. The poisoning by hydrocarbons can be completely reversed by heat treatment in laboratory air.